Exercícios resolvidos sobre pentágono

Estudando matemática para concursos? Confira aqui vários exercícios resolvidos sobre o pentágono, todos retirados das últimas provas de concursos e ENEM.

Bom estudo!

Exercício 1 (IBGE). O pentágono ABCDE tem área de 125 m2. Esse pentágono foi ampliado a partir do vértice A, como mostra a figura a seguir, transformando­-se no pentágono APQRS cujos lados PQ, QR e RS são, respectivamente, paralelos aos lados BC, CD e DE do pentágono original.

prova resolvida ibge 2016 questao 46

Se AB = 10 m e BP = 2 m , a área da região sombreada na figura é, em m²:

(A) 55;

(B) 64;

(C) 72;

(D) 75;

(E) 80.

Resolução:

Considerando que os polígonos são semelhantes, que x é a área do pentágono maior e que y é a área do pentágono menor, temos que:

x/y = (AP/AB)²

x/125 = (12/10)²

x/125 = 1,22

x/125 = 1,44

x = 1,44.125

x = 180m²

Portanto, a área sombreada é igual a 180 – 125 = 55 m²

Resposta: A

Exercício 2 (PM PR). Um serralheiro precisa estimar o custo de estruturas de alumínio no formato de polígonos. Essas estruturas poligonais devem ter barras diagonais para reforçá-las. O custo da estrutura metálica depende do número de barras diagonais. O número de diagonais d de um polígono de n lados é dado por uma função quadrática. Vejamos, o triângulo tem n = 3 lados e d = O diagonais, o quadrado tem n = 4 lados e d = 2 diagonais, o pentágono tem n = 5 lados e d = 5 diagonais e assim por diante. Generalizando, em um polígono de n lados, o número de diagonais d é dado por:

Resolução

A fórmula matemática utilizada no cálculo das diagonais de um polígono foi desenvolvida através do seguinte raciocínio:

– descontando de n os 3 vértices para onde não podem ser traçadas diagonais (os 2 adjacentes e ele mesmo): n – 3;

– multiplicando o resultado obtido pelo número de vértices: n . (n – 3);

– dividindo o resultado obtido por 2, devido às diagonais consideradas duas vezes.

Resposta: D

Exercício 3 (FGV). Um terreno tem a forma do pentágono ABCDE, como o da figura a seguir, em que os ângulos em A e B são retos e a distância AB mede 24 m. Sabe-se que o perímetro do terreno é de 84 m e que os comprimentos dos lados BC, CD, DE, e EA são todos iguais.

A área desse terreno, em m2, é

a) 412.

b) 440.

c) 468.

d) 480.

e) 496.

Resolução

Sabendo que AB mede 24 m, e que os lados BC, CD, DE, e EA são todos iguais, temos:

Como o perímetro mede 84 m, temos:

4x + 24 = 84

4x = 84 – 24

4x = 60

x = 60/4

x = 15 m

Como os ângulos em A e B são retos, ABCE é um retângulo de área:

24 . 15 = 360 m²

Para finalizar, precisamos calcular a área do triângulo ECD, do qual sabemos a medida da base, porém não sabemos a altura DF.

A altura de ECD pode ser calculada através do Teorema de Pitágoras, aplicado em FCD, onde FC é a metade de AB, ou seja, 12 m.

DC² = FD² + FC²

15² = FD² + 12²

225 = FD² + 144

FD² = 225 – 144

FD² = 81

FD = 9 m

Calculando a área do triângulo ECD:

24 . 9 / 2 = 12 . 9 = 108 m²

Área do pentágono:

360 + 108 = 468 m²

Resposta: C



Gostou dos nossos exercícios resolvidos sobre pentágono?

Deixe o seu comentário.

About Jordon

Graduado e mestre em matemática pela Universidade Federal do Espírito Santo. Trabalha como bancário há 11 anos e também como professor em cursos preparatórios para ENEM, vestibulares e concursos públicos.

Leave a Reply

Your email address will not be published. Required fields are marked *

*