EXERCÍCIOS RESOLVIDOS MULTIPLICAÇÃO DE MATRIZES

Apresentamos nesta página vários exercícios resolvidos sobre a multiplicação de matrizes, todos retirados das mais variadas provas de concursos realizados nos últimos anos.

O ideal é que o aluno já tenha acompanhado nosso conteúdo sobre o assunto e também sobre a definição e propriedades das matrizes.

Bom estudo!

 

 

Questão 1 (Prefeitura de Venda Nova do Imigrante – CONSULTPLAN 2016). Calcular o valor de x + y + z, sabendo que:

exercicio resolvido sobre matrizes

A) 1.

B) 2.

C) 3.

D) 4.

 

Resolução

Vamos utilizar os nossos conhecimentos sobre multiplicação de matrizes, onde C é a matriz resultado do produto AxB:

 

Calculando o elemento c12:

c12 = 2.y + 1.2

0 = 2y + 2

2y = -2

y = -1

 

Calculando o elemento c21:

c21 = x.1 + 2.1

5 = x + 2

x = 5 – 2

x = 3

 

Calculando o elemento c22:

c22 = x.y + 2.2

z = 3.(-1) + 4

z = -3 + 4

z = 1

 

Assim, x+y+z = -1 + 3 + 1 = 3

Resposta: C

 

 

Questão 2 (Prefeitura de Santo André SP – IBAM 2015). Considere as seguintes matrizes:

questao resolvida sobre matrizes

Sendo “a” um número real, para que tenhamos A . B = C, o valor da variável “a” deverá ser:

a) um número inteiro, ímpar e primo.

b) um número inteiro, par, maior que 1 e menor que 5.

c) um número racional, par, maior que 5 e menor que 10.

d) um número natural, impar, maior que 1 e menor que 5.

 

Resolução:

O objetivo da questão é achar o valor do número real “a”, que faz com que a multiplicação A.B = C seja válida.

Vamos verificar o elemento c21:

c21 = a.1 + 2.0 + 1.2

9 = a + 0 + 2

a = 9 – 2

a = 7

 

Podemos fazer o mesmo cálculo para os elementos c21, c22, c31 e c32 que o valor de “a” também será 7, que é m número inteiro, ímpar e primo.

Resposta: A

 

 

Questão 3 (AGU – IDECAN 2014). Dadas as matrizes A = ( aij)2×3 em que aij = i – j e B = ( bij)3×2 em que bij = i² – j. Seja a matriz C a matriz resultante do produto das matrizes A e B, nesta ordem. Assim, o elemento c11 será

a) 17

b) 18

c) 19

d) -18

e) -19

 

Resolução:

O primeiro passo para resolver a questão é descobrirmos como são as matrizes A e B.

 

Como em um elemento aij, i representa a linha e j a coluna, podemos concluir que cada elemento de A é a diferença entre a linha e a coluna onde o mesmo está localizado. Assim:

a11 = 1 – 1 = 0

a12 = 1 – 2 = -1

a13 = 1 – 3 = -2

a21 = 2 – 1 = 1

a22 = 2 – 2 = 0

a23 = 2 – 3 = -1

Veja como fica a matriz A:

matriz 2x3 exercicio

 

Da mesma forma, vamos calcular cada elemento da matriz B, onde bij = i² – j:

b11 = 1² – 1 = 0

b12 = 1² – 2 = -1

b21 = 2² – 1 = 3

b22 = 2² – 2 = 2

b31 = 3² – 1 = 8

b32 = 3² – 2 = 7

Veja como fica a matriz B:

matriz 3x2 exercicio

 

Calculando o elemento c11, onde A.B = C:

c11 = 0.0 + (-1).3 + (-2).8

c11 = 0 – 3 – 16

c11 = -19

 

Resposta: E

 

 

Questão 4 (AGU – IDECAN 2014). Seja A uma matriz 2 x 3 e B uma matriz 3 x 2. A matriz C, resultante do produto da matriz A pela B, nesta ordem, é uma matriz de ordem

a) 2 x 2.

b) 2 x 3.

c) 3 x 2.

d) 3 x 3.

e) Não é possível fazer o produto.

 

Resolução

Para sabermos se é possível multiplicarmos duas matrizes, basta verificarmos se a quantidade de colunas da primeira é igual a quantidade de linhas da segunda. Neste caso são iguais, ambas são iguais a 3.

O número de linhas e colunas da matriz resultante do produto A.B será o número de linhas de A e o número de colunas de B, ou seja, teremos uma matriz 2×2.

Resposta: A

 

 

Questão 5 (PM ES – AOCP). Considere as duas matrizes A e B a seguir:

Cada linha da matriz A indica a pontuação obtida, em cada tentativa, em uma prova de tiro ao alvo por um competidor. Assim, a primeira linha indica as pontuações do competidor X, a segunda linha indica as pontuações do competidor Y e a terceira linha indica as pontuações do competidor Z. Obtendo-se uma matriz C = A.B, na matriz C aparece a nota de desempenho final de cada um dos três competidores X, Y e Z, respectivamente, na primeira, na segunda e na terceira linha. Dessa forma, é correto afirmar que

(A) o competidor X obteve a menor nota de desempenho final, igual a 250.

(B) o competidor Y obteve a maior nota de desempenho final, igual a 260.

(C) o competidor Z obteve a menor nota de desempenho final, igual a 230.

(D) os competidores X e Y obtiveram a mesma nota de desempenho final.

(E) os competidores X e Z obtiveram a mesma nota de desempenho final.

 

Resolução

Calculando a nota de cada um dos competidores:

X = 50.1 + 30.2 + 40.3 = 50 + 60 + 120 = 230

Y = 30.1 + 40.2 + 50.3 = 30 + 80 + 150 = 260

Z = 60.1 + 50.2 + 30.3 = 60 + 100 + 90 = 250

Resposta: B

 

 

Gostou dos nossos exercícios resolvidos sobre multiplicação de matrizes?

Deixe o seu comentário.

Sobre Jordon

Graduado e mestre em matemática pela Universidade Federal do Espírito Santo. Trabalha no BB há 15 anos e atua como professor de matemática nas horas vagas.

One comment

  1. Jaison dos Santos

    Obrigado ajudou demais.

Deixe um comentário

Your email address will not be published. Required fields are marked *

*