EXERCÍCIOS RESOLVIDOS SOBRE PROGRESSÃO ARITMÉTICA PA

Procurando exercícios resolvidos sobre progressões aritméticas, as famosas P.A.s?

Chegou ao site certo.

Confira uma lista especial de questões comentadas, todas retiradas de diversos concursos públicos realizados pelo país.

Bons estudos.

 

 

Questão 1 (CFO PM ES 2013 – Exatus). Numa cerimônia militar, os soldados de um quartel da capital capixaba foram organizados em fileiras. Na primeira fileira havia 18 soldados, na segunda 20 soldados, na terceira 22 soldados e assim sucessivamente. Sabe-se que no total havia 480 soldados nessa cerimônia. Qual o número de fileiras de soldados que foram formadas nessa cerimônia?

a) 15

b) 16

c) 17

d) 18

e) 19

 

Resolução:

Nota-se que temos uma Progressão Aritmética, onde o primeiro termo é o 18, a razão é o 2 e a soma dos termos é 480.

 

Pela fórmula do termo geral:

an = a1 + (n – 1)r

an = 18 + (n – 1)2

an = 18 + 2n – 2

na = 16 + 2n

 

Vamos agora substituir na fórmula da soma dos termos de uma P.A.

Sn = (a1 + an).n/2

480 = (18 + 16 + 2n).n/2

480.2 = (34 + 2n)n

960 = 34n + 2n²

2n² + 34n – 960 = 0

n² + 17n – 480 = 0

 

Temos uma equação do segundo grau.

Resolvendo pelo método de soma e produto:

Soma = -b/a = -17

Produto = c/a = -480

Os dois números cuja soma é -17 e o produto é -480 são -32 e 15.

Como o n representa a quantidade de termos, os valores negativos não servem, logo, n = 15.

Resposta: A

 

 

Questão 2 (PM ES 2013 – Exatus). O comandante de um destacamento militar ordenou que seus subordinados se organizassem em filas. A primeira fila era composta por 14 soldados, a segunda por 18 soldados, a terceira por 22 soldados, e assim sucessivamente. Sabe-se que o número de soldados deste destacamento é igual a 1550. Dessa forma, é correto afirmar que serão formadas:

a) 18 filas

b) 20 filas

c) 23 filas

d) 25 filas

e) 30 filas

 

Resolução:

Temos uma Progressão Aritmética, onde:

a1 = 14

r = 4

Sn = 1550

 

Precisamos descobrir o valor de n (número de termos)

Pela fórmula do termo geral:

an = a1 + (n – 1)r

an = 14 + (n – 1)4

an = 14 + 4n – 4

an = 4n + 10

 

Pela fórmula da soma dos termos:

Sn = (a1 + an)n/2

1550 = (14 + an)n/2

 

Vamos substituir an = 4n + 10 na segunda expressão:

1550 = (14 + 4n + 10)n/2

2.1550 = (4n + 24)n

3100 = 4n² + 24n

4n² + 24n – 3100 = 0

n² + 6n – 775 = 0

Δ = b² – 4ac

Δ = 6² – 4.1.(-775)

Δ = 36 +3100

Δ = 3136

 

prova resolvida pm es 2013

Assim,

Prova resolvida pm es 2013

Como n representa o número de filas, vamos considerar apenas o valor positivo.

Resposta: D

 

 

Questão 3 (PM SC 2011 – Cesiep). Certo cometa foi visível da Terra por alguns dias nos anos de 1774, 1787, 1800, etc., tendo sempre mantido essa regularidade. A próxima aparição deste cometa ocorrerá novamente no ano de:

a) 2020

b) 2023

c) 2019

d) 2021

 

Resolução:

Nota-se que o cometa aparece a cada 13 anos.

Considerando que estamos em 2013 e que o cometa passou em 1800:

2013 – 1800 = 213

2013 dividido por 13 é 16 e sobra 5, logo, precisamos de mais 8 anos para a próxima passagem do cometa:

2013 + 8 = 2021

Resposta: D

 

 

Questão 4 (CFO ES Bombeiros – Cespe). As distâncias entre 3 cidades, medidas em quilômetros, são os comprimentos dos lados de um triângulo retângulo. Considerando que essas medidas estão em progressão aritmética, com razão 45, julgue os itens a e b.

a) A menor distância entre as 3 cidades é inferior a 130 km.

b) A soma das distâncias entre as 3 cidades é igual a 540 km.

 

Resolução:

Se estão em P.A. de razão 45, temos:

hipotenusa = x + 45

cateto 1 = x

cateto 2 = x – 45

 

Usando o Teorema de Pitágoras

(x + 45)² = x² + (x – 45)²

x² + 90x + 45² = x² + x² – 90x + 45²  (“cortando” x² e 45² que se repetem)

0 = x² – 90x – 90x

x² – 180x = 0

x(x – 180) = 0

Daí, x = 0 ou x = 180

Vamos descartar x = 0 pois trata-se de um dos lados do triângulo.

 

Cada lado medirá: 225 (180 + 45), 180 e 135 (180 – 45)

 

a) A menor distância entre as 3 cidades é inferior a 130 km.

A menor distância é 135 km

ERRADO

 

b) A soma das distâncias entre as 3 cidades é igual a 540 km.

225 + 180 + 135 = 540 km

CERTO

 

 

Questão 5 (BB 2010 – Cesgranrio). Segundo dados do Instituto Internacional de Pesquisa da Paz de Estocolmo (Simpri), os gastos militares dos Estados Unidos vêm crescendo nos últimos anos, passando de 528,7 bilhões de dólares, em 2006, para 606,4 bilhões de dólares, em 2009. Considerando que este aumento anual venha acontecendo de forma linear, formando uma progressão aritmética, qual será, em bilhões de dólares, o gasto militar dos Estados Unidos em 2010?

(A) 612,5

(B) 621,3

(C) 632,3

(D) 658,5

(E) 684,1

 

Resolução:

Lembrando que em uma P.A. o aumento é sempre o mesmo, e esse aumento é chamado de razão da P.A.

Vamos calcular o aumento, em bilhões de dólares, de 2006 a 2009:

606,4 – 528,7 = 77,7

 

Como o aumento foi em 3 anos, a cada ano os gastos cresceram 25,9 bilhões.

Assim, em 2010 dos gastos foram de:

606,4 + 25,9 = 632,3 bilhões

Resposta: C

 

 

Questão 6 (PM Paraná 2010 – Cops). Três números estão em uma progressão aritmética (PA) crescente. O produto dos três é 66 e a soma deles é 18. Determine o próximo termo dessa progressão aritmética.

a) a4 = 12

b) a4 = 13

c) a4 = 14

d) a4 = 15

e) a4 = 16

 

Resolução:

Observe que podemos representar os três números por x-r, x, x+r, onde r = razão. Temos:

x – r + x + x + r = 18

3x = 18

x = 18/3

x = 6

 

(x – r).x.(x + r) = 66

(6 – r).6(6 + r) = 66

(36 – r²).6 = 66

216 – 6r² = 66

6r² = 216 – 66

6r² = 150

r² = 150/6 = 25

r = 5

 

Logo,

a3 = 6 + 5 = 11

a4 = 11 + 5 = 16

Resposta: E

 

 

Questão 7 (INSS 2008 – Cespe) A tabela abaixo mostra, em porcentagens, a distribuição relativa da população brasileira por grupos etários, de acordo com dados dos censos demográficos de 1940 a 2000.

prova-resolvida-inss-2008-2

Com base nos dados acerca da evolução da população brasileira apresentados na tabela acima, julgue a afirmação abaixo:

“De acordo com os dados apresentados na tabela, os percentuais relativos à população brasileira com idade entre 15 e 64 anos formam uma progressão aritmética de razão menor que 1.”

Resolução

Temos a sequência: 54,9; 55,6; 54,6;…

Note que já nos primeiros termos não existe um padrão, ou seja, nem pode ser considerada uma P.A.

Resposta: Errado

 

 

Questão 8 (PRF 2008 – Cespe). O governo ainda espera a consolidação dos dados do primeiro mês de aplicação da Lei Seca para avaliar seu impacto sobre a cassação de CNHs. As primeiras projeções indicam, porém, que as apreensões subirão, no mínimo, 10%. Antes da vigência da Lei Seca, eram suspensas ou cassadas, em média, aproximadamente 155.000 CNHs por ano. Se as previsões estiverem corretas, a média anual deve subir para próximo de 170.000. A tabela a seguir mostra esses resultados nos últimos anos( fonte: DENATRAN ).

prova-resolvida-prf-2008-3

Supondo que, neste ano de 2008, a variação na quantidade de CNHs emitidas de um mês para o mês anterior seja mantida constante e que, em fevereiro de 2008, tenham sido emitidas 175.000 habilitações, então o total de habilitações emitidas em 2008 será, em milhões,

A) inferior a 3.

B) superior a 3 e inferior a 3,5.

C) superior a 3,5 e inferior a 4.

D) superior a 4 e inferior a 4,5.

E) superior a 4,5.

 

Resolução:

Como a variação é constante, vamos assumir que a cada mês aumenta x, e como em fevereiro foram emitidas 175000 habilitações, temos:

(175000 – x) + (175000) + (175000 + x) + (175000 + 2x) + (175000 + 3x) + (175000 + 4x) = 1500000

1050000 + 9x = 1500000

9x = 450000

x = 50000

 

Veja que temos uma Progressão Aritmética: 125000, 175000, 225000, …

a12 = 125000 + 11.50000 = 675000

prova-resolvida-prf-2008

Resposta: E

 

 

Questão 9 (Caixa 2006 – Cespe). A CAIXA criou as Cestas de Serviços com o compromisso de valorizar o relacionamento com seus clientes e oferecer cada vez mais vantagens.

Você paga apenas uma tarifa mensal e tem acesso aos produtos e serviços bancários que mais se adequarem ao seu relacionamento com a CAIXA.

Alguns dos itens disponíveis têm seu uso limitado. Caso você exceda as quantidades especificadas ou utilize um item não incluso na sua cesta, será cobrado o valor daquele 10 produto ou serviço discriminado na Tabela de Tarifas vigente.

A janela do PowerPoint 2003 a seguir apresenta, no slide em edição, outras informações acerca das Cestas de Serviços da CAIXA.

prova-resolvida-caixa-2006-1

Com base nas informações do texto e sabendo que, a cada R$ 100,00 de saldo médio no trimestre em aplicação na poupança, o cliente acumula 1 ponto para o cálculo do desconto na tarifa mensal de serviços, julgue os seguintes itens.

 

Questão 54. A seqüência numérica formada pelos dias que podem ser escolhidos para débito da tarifa constitui uma progressão aritmética cuja razão é um número racional.

CORRETO

Dias para escolha: 10, 15, 20 e 25

Nota-se que os quatro números formam uma PA de razão 5 (racional).

 

 

 

Os bancos oferecem algumas alternativas de financiamento e amortização de dívidas. O sistema de amortização é que define a forma de cálculo da prestação. Os sistemas atualmente praticados pelas instituições financeiras incluem: sistema de amortização constante (SAC) e sistema francês de amortização (Tabela Price).

Suponha que Paulo conseguiu financiar, pelo sistema francês de amortização, um microcomputador no valor de R$ 5.000,00, em doze parcelas mensais e iguais, com taxa de juros de 5% ao mês, com o 1.º pagamento feito 30 dias após a assinatura do contrato. A figura a seguir apresenta uma janela do Excel 2003 contendo a planilha do financiamento obtido por Paulo. O conteúdo das células D9 e E10 está formatado para a cor da fonte branca. Os valores correspondentes a “prestação”, “juros”, “amortização”, “saldo devedor” e “totais” foram calculados utilizando-se o Excel 2003, com as células formatadas para número com duas casas decimais, o que ocasiona arredondamento para cima quando o algarismo da terceira casa decimal é maior ou igual a 5.

prova-resolvida-caixa-2006-3

A partir das informações acima, julgue os itens a e b.

a) O SAC consiste em um sistema de amortização de dívida em prestações periódicas, sucessivas e em progressão geométrica decrescente, ou seja, com razão menor que 1, no qual o valor da prestação é composto por uma parcela de juros uniformemente decrescente e outra de amortização, que permanece constante ao longo de todo o período do
financiamento.

ERRADO

No SAC as prestações são apresentadas na forma de PA e não de PG, como afirma a questão.

 

b) Observe a sequência de figuras com bolinhas.

prova resolvida sap sp 2013 questao 30

Mantendo-se essa lei de formação, o número de bolinhas na 13.a posição (P13) será de

(A) 91.

(B) 74.

(C) 63.

(D) 58.

(E) 89.

 

Resolução:

Repare que:

P1 = 1

P2 = 1 + 2

P3 = 1 + 2 + 3

P13 = 1 + 2 + 3 + … + 12 + 13

Basta somarmos os termos dessa PA, onde a1 = 1, a13 = 13 e n = 13

 

Pela fórmula da soma de uma PA:

S = (a1 + an).n/2

S = (1 + 13). 13/2

S = 14.13/2

S = 91

Sobre Jordon

Graduado e mestre em matemática pela Universidade Federal do Espírito Santo. Trabalha como bancário há 10 anos e também como professor em cursos preparatórios para ENEM, vestibulares e concursos públicos.

Deixe uma resposta

eu endereço de email não será publicado. Campos Obrigatórios *

*