EXERCÍCIOS RESOLVIDOS SOBRE ÁREAS DE FIGURAS PLANAS

Procurando exercícios resolvidos sobre áreas de figuras planas?

Chegou ao site certo.

Confira exercícios resolvidos retirados de diversas provas de concursos realizadas por todo o país.

Bons estudos.

 

 

 

Prova Resolvida PM Pará 2012 – Questão 21. A figura abaixo mostra um telhado de uma casa, onde AB = AC, BC = 4 m, AM = 1,5 m, CD = BF = 15 m e M é o ponto médio de BC. Considerando que para cobrir um metro quadrado de telhado são utilizadas 16 telhas, a quantidade de telhas para cobrir esse telhado será de:

prova resolvida pm para 2012 exercicios resolvidos calculo de areas

a) 800

b) 900

c) 1000

d) 1200

e) 1500

 

Resolução:

Primeiramente vamos calcular a medida de AC:

Como AB = AC e M é ponto médio de BC, temos que AMC é um triângulo retângulo, onde AC é a hipotenusa, MC = 2 pois BC = 4 e AM = 1,5.

 

Vamos utilizar o Teorema de Pitágoras:

AC² = MC² + AM²

AC² = 2² + 1,5²

AC² = 4 + 2,25

AC² = 6,25

AC = 2,5m

 

Agora vamos calcular a área de um dos lados do telhado, depois multiplicar por 2:

Área = AC.CD = 2,5.15 = 37,5m²

2.37,5 = 75m²

 

Como cada m² equivale a 16 telhas:

16.75 = 1200

 

 

Prova Resolvida PM Pará 2012 – Questão 27. Um empresário possui um espaço retangular de 110 m por 90 m para eventos. Considerando que cada metro quadrado é ocupado por 4 pessoas, a capacidade máxima de pessoas que esse espaço pode ter é:

a) 32.400

b) 34.500

c) 39.600

d) 42.500

e) 45.400

 

Resolução:

Vamos calcular a área do espaço:

A = 90 x 110 = 9900 m²

Como cabem 4 pessoas por m²:

Capacidade = 4.9900 = 39600

 

 

Prova Resolvida PM Pará 2012 – Questão 22. Os pontos (2,3), (5,3) e (2,7) são vértices de um triângulo retângulo. A área desse triângulo é:

a) 5 u.a

b) 6 u.a

c) 7 u.a

d) 8 u.a

e) 9 u.a

 

Resolução:

Veja no desenho como fica o triângulo:

prova resolvida pm para 2012 uepa questao 22

 

Fórmula para cálculo de área de um triângulo:

A = base x altura / 2

base = 5 – 2 = 3

altura = 7 – 3 = 4

A = 3.4/2 = 6

 

 

Prova Resolvida CFO PM ES 2013 – Exatus – Questão 65. Adriana planta flores num canteiro circular de raio 8 m. Ao redor desse canteiro, ela pretende plantar ervas medicinais formando uma coroa circular, de maneira que a parte destinada às flores sofrerá uma redução de 2 m em seu diâmetro. A área ocupada pelas ervas medicinais neste canteiro será igual a:

 

Resolução:

Adriana plantava em um circulo de raio 8. Como ela vai plantar ervas medicinais em volta, reduzindo em 2m o diâmetro, o raio passará a ser 7.

Assim, a área da coroa circular será a diferença entre a área do circulo de raio 8 e do circulo de raio 7 (Área circunferência = π.r²):

π.8² – π.7² = 64π – 49π = 15π

(Exatus – CFO ES 2013) Questão 65

 

 

 

 

 

 

 

 

 

 

Prova Resolvida PM ES 2013 – Funcab – Questão 67. Um para-raios instalado em um determinado prédio protege uma área circular de raio R = 20 m no solo. O valor total da área do solo, em metros quadrados, protegida por esse para-raios, é de:

(Adote o valor aproximado deπ= 3,14)

A) 1.256 m²

B) 1.294 m²

C) 1.306 m²

D) 1.382 m²

E) 1.416 m²

 

Resolução:

Calculando a área do círculo:

Área = pi x raio²

Área = 3,14 x 20²

Área = 3,14 x 400

Área = 1256

 

 

Prova Resolvida PM Acre Músico 2012 – Funcab – Questão 45. A área de um triângulo isósceles cujos lados iguais medem 4, e dois de seus ângulos medem 45º, corresponde a:

A) 4 u.a.

B) 8 u.a.

C) 12 u.a.

D) 16 u.a.

E) 20 u.a.

 

Resolução:

Temos um triângulo retângulo (o valor da altura e da base é 4).

A = base x altura / 2

A = 4×4/2

A = 8
prova-resolvida-pm-ac-2012-4

 

 

 

Prova Resolvida Correios 2011 – Cespe – Questão 23. Em 2008, nos 200 anos do Banco do Brasil, os Correios lançaram um selo comemorativo com uma tiragem de 1.020.000 unidades. No selo, cujo formato é de um retângulo medindo 40 mm × 30 mm, a estampa ocupa um retângulo que mede 35 mm × 25 mm. Dadas essas condições, é correto afirmar que a área do retângulo da estampa é

A. superior a 90% da área do retângulo do selo.

B. inferior a 75% da área do retângulo do selo.

C. superior a 75% e inferior a 80% da área do retângulo do selo.

D. superior a 80% e inferior a 85% da área do retângulo do selo.

E. superior a 85% e inferior a 90% da área do retângulo do selo.

 

Resolução:

Como estamos trabalhando com porcentagem, não há necessidade de utilizar a medida mm.

Basta dividirmos a área da estampa pela área do selo. Veja:

exercicios resolvidos areas de figuras planas

 

 

 

 

Prova Resolvida PM Paraná 2010 – Cops – Questão 19. Considere uma placa de trânsito na forma de um hexágono regular com lados de L centímetros. Sabe-se que um hexágono regular de lados L é formado por seis triângulos equiláteros de lados L. Como a leitura desta sinalização (placa) depende da área A da placa, temos que A, em função do comprimento L, é dada por:

prova-resolvida-pm-pr-2010-4

 

prova-resolvida-pm-pr-2010-5

Primeiramente, a área do hexagono é 6x a área do triângulo.

 

Aplicando o Teorema de Pitágoras, vamos descobrir a altura h do triângulo para descobrirmos sua área:

l² = h² + (l/2)²

l² – l²/4 = h²

(4l² – l²)/4 = h²

3l²/4 = h²

h = l√3/2

 

Calculando a área:

A∆ = l . l√3/2/2

A∆ = l² √3 /4

 

A área do hexágono regular será igual a 6 vezes a área do triângulo equilátero.

A = 6 . l² √3/4

A = 3 l² √3 / 2

 

 

Prova Resolvida PRF 2008 – Cespe – Questão 18.
prova-resolvida-prf-2008-7

Considerando, em relação às figuras ao lado, que, na figura I, as 4 curvas são quartos de circulo; nas figuras II, III e IV, as curvas são 2 semicírculos; na figura V, aparece 1 quarto de círculo e, interno a ele, um semicírculo, nessa situação, as figuras em que as partes sombreadas têm áreas iguais são:

a) I e IV.

b) I e V.

c) II e III.

d) II e V.

e) III e IV

 

Resolução:

 

Figura I:

Temos um quadrado com 4 semicírculos inscritos, que resultam em um círculo completo. Então a área sombreada será a área do quadrado menos a área do círculo com raio de 1 cm. Calculando as áreas:

1. Área do quadrado: 2 x 2 = 4 cm²;

2. Área do círculo: ∙π 1² = π cm²;

3. Área sombreada: 4 – π.

 

Figura II:

A área sombreada é formada por 3/4 da área de um círculo com raio de 1 centímetro, menos a área de 2 semicírculos de raio igual a 1/2 centímetro. Lembre que dois semicírculos formam um círculo. Então:

1. Área do círculo com raio de 1 cm: π 1² = π cm²;

2. 3/4 da área do círculo anterior: 3π/4

3. Área do círculo com raio igual de 1/2 cm: π.(1/2)² = π/4

4. Área sombreada: 3π/4 – π/4 = 2π/4 = π/2cm².

 

Figura III:

Se o semicírculo sombreado trocar de lugar com o semicírculo brando, a área sombreada será igual a 3/4 da área do círculo de raio de 1 cm. Veja:

1. Área do círculo de raio de 1 cm: π1² = π cm²;

2. Área sombreada: 3π/4 cm².

 

Figura IV

Se encaixarmos o semicírculo sombreado no semicírculo branco, têm-se um retângulo com a metade sombreada e a outra branca. Dessa forma, a área sombreada seria igual a metade da área de um retângulo de 2 x 2. Veja:

1. Área sombreada: 2.2/2 = 2 cm².

 

Figura V:

A área sombreada será obtida com a subtração da área de um quarto de círculo de raio igual a 2 centímetro pela metade de um semicírculo de raio igual a 1 centímetro. Calculando as áreas:

1. Área de 1/4 de círculo de 2 cm de raio: π2²/4 = πcm².

2. Área de um semicírculo de 1 cm de raio: π1²/2 = π/2cm².

3. Área sombreada: π – π/2 = π/2 cm².

 

 

Prova Resolvida SAP SP 2013 – Questão 28. Ricardo esteve em um lançamento imobiliário onde a maquete, referente aos terrenos, obedecia a uma escala de 1:500. Ricardo se interessou por um terreno de esquina, conforme mostra a figura da maquete.

prova resolvida sap sp 2013 questao 28

A área, em metros quadrados, desse terreno é de

(A) 300.

(B) 755.

(C) 120.

(D) 525.

(E) 600.

 

Resolução:

Primeiramente, vamos utilizar a escala 1:500 para sabermos as dimensões reais do terreno:

2cm equivale a 2.500 = 1000cm = 10m

6cm equivale a 6.500 = 3000cm = 30m

5cm equivale a 5.500 = 2500cm = 25m

 

Sabendo disto, para calcularmos a área é muito simples, basta dividirmos a figura em duas, um retângulo e um triângulo:

O retângulo terá base 30m (6cm) e altura 10m (2cm):

Área = 30×10 = 300m²

O triângulo terá base 30m (6cm) e altura 15m (3cm):

Área  = 30×15/2 = 225m²

 

Área total = 300 + 225 = 525m²

 

Sobre Jordon

Graduado e mestre em matemática pela Universidade Federal do Espírito Santo. Trabalha como bancário há 10 anos e também como professor em cursos preparatórios para ENEM, vestibulares e concursos públicos.

3 comentários

  1. determine a area de um triangulo retangulo tal que a soma das medidas dos catetos e igual a 28 cm e a soma dos quadrados das medidas dos tres lados e igual a800 cm²

  2. A questão que diz respeito ao jardim parece estar errada. A questão nos da um raio de 8 cm, e diz que é retirado 2cm. Como ficaria com 7 ?

    • Olá Ana,
      Uma típica pegadinha que confunde bastante.
      A questão fala que o RAIO é 8 e o DIÂMETRO é reduzido em 2, ou seja, o RAIO é reduzido em 1.
      Bons Estudos.

Deixe uma resposta

eu endereço de email não será publicado. Campos Obrigatórios *

*