DERIVADA DA FUNÇÃO INVERSA

Você sabe qual é a derivada de uma função inversa? Veremos aqui uma fórmula muito simples e muito útil em alguns tipos de funções.

Não deixe de ver também as nossas publicações sobre outros tópicos do cálculo diferencial.

Bom estudo!

 

 

Seja y = f(x) uma função bijetora (inversível) e derivável no intervalo ]a,b[, tal que f'(x)≠0 para todo x∈]a,b[.

A função inversa de y = f(x), representada por x=g(y), é derivável no ponto y, sendo y = f(x).

 

Como y = f(x) e x = g(y), temos:

x = g(f(x))

 

Utilizando a regra da cadeia, vamos descobrir qual é a derivada da função inversa derivando a igualdade acima em relação à variável x:

 

De onde concluímos que:

 

 

Exemplo. Calcular a derivada de y = √x, com x>0.

É fácil concluir que a função x = y² é a inversa de y = √x, observando que x>o.

Derivando a função inversa:

x’ = 2y

 

Utilizando a regra que acabamos de descobrir:

 

 

Aprendeu a calcular a derivada da função inversa? Tem mais alguma dúvida?

Deixe o seu comentário.

About Jordon

Graduado e mestre em matemática pela Universidade Federal do Espírito Santo. Trabalha como bancário há 11 anos e também como professor em cursos preparatórios para ENEM, vestibulares e concursos públicos.

Leave a Reply

Your email address will not be published. Required fields are marked *

*